Mapping quantitative trait loci by an extension of the Haley-Knott regression method using estimating equations.
نویسندگان
چکیده
The Haley-Knott (HK) regression method continues to be a popular approximation to standard interval mapping (IM) of quantitative trait loci (QTL) in experimental crosses. The HK method is favored for its dramatic reduction in computation time compared to the IM method, something that is particularly important in simultaneous searches for multiple interacting QTL. While the HK method often approximates the IM method well in estimating QTL effects and in power to detect QTL, it may perform poorly if, for example, there is strong epistasis between QTL or if QTL are linked. Also, it is well known that the estimation of the residual variance by the HK method is biased. Here, we present an extension of the HK method that uses estimating equations based on both means and variances. For normally distributed phenotypes this estimating equation (EE) method is more efficient than the HK method. Furthermore, computer simulations show that the EE method performs well for very different genetic models and data set structures, including nonnormal phenotype distributions, nonrandom missing data patterns, varying degrees of epistasis, and varying degrees of linkage between QTL. The EE method retains key qualities of the HK method such as computational speed and robustness against nonnormal phenotype distributions, while approximating the IM method better in terms of accuracy and precision of parameter estimates and power to detect QTL.
منابع مشابه
Multitrait least squares for quantitative trait loci detection.
A multiple-trait QTL mapping method using least squares is described. It is presented as an extension of a single-trait method for use with three-generation, outbred pedigrees. The multiple-trait framework allows formal testing of whether the same QTL affects more than one trait (i.e., a pleiotropic QTL) or whether more than one linked QTL are segregating. Several approaches to the testing proc...
متن کاملQTL Express: mapping quantitative trait loci in simple and complex pedigrees
QTL Express is the first application for Quantitative Trait Locus (QTL) mapping in outbred populations with a web-based user interface. User input of three files containing a marker map, trait data and marker genotypes allows mapping of single or multiple QTL by the regression approach, with the option to perform permutation or bootstrap tests.
متن کاملMethods for QTL analysis
SINGLE VERSUS MULTIPLE MARKERS ........................................................................................................ 45 DETERMINING ASSOCIATIONS BETWEEN GENETIC MARKERS AND QTL WITH TWO MARKERS ................... 45 INTERVAL MAPPING .................................................................................................................................. 50 Maximum Li...
متن کاملOn locating multiple interacting quantitative trait loci in intercross designs.
A modified version (mBIC) of the Bayesian Information Criterion (BIC) has been previously proposed for backcross designs to locate multiple interacting quantitative trait loci. In this article, we extend the method to intercross designs. We also propose two modifications of the mBIC. First we investigate a two-stage procedure in the spirit of empirical Bayes methods involving an adaptive (i.e.,...
متن کاملFine-mapping quantitative trait loci with a medium density marker panel: efficiency of population structures and comparison of linkage disequilibrium linkage analysis models
Recently, a Haley-Knott-type regression method using combined linkage disequilibrium and linkage analyses (LDLA) was proposed to map quantitative trait loci (QTLs). Chromosome of 5 and 25 cM with 0·25 and 0·05 cM, respectively, between markers were simulated. The differences between the LDLA approaches with regard to QTL position accuracy were very limited, with a significantly better mean squa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 173 4 شماره
صفحات -
تاریخ انتشار 2006